TECHNICAL ASPECTS TO SUPPORT REGIONAL MARKET OPERATION

CAREM WORKSHOP ON REGIONAL ELECTRICITY MARKET CONCEPT AND PROSPECTIVE

TASHKENT, UZBEKISTAN
OCTOBER 23-24, 2019
CONTENTS

- Electricity Exchanges
- Interconnection Capacity (Congestion management)
- Ancillary services and balancing mechanisms
- Resource Adequacy of the system and security of supply
ELECTRICITY EXCHANGES
• Example of SFRJ (Former Jugoslavia)
 – Internal country trade (8 Power Utilities, Power plants as independent generation companies, Distribution companies as suppliers)
 – Generation companies were selling energy to Power Utilities, and Power Utilities were re-selling energy to final customers (copy of similar principal in USA)
 – Process was monitored and regulated by JUGEL
 – Import/Export was done by JUGEL

• Example of Europe (before EU)
 – Power Utilities (state owned) (country by country) exported energy between each other

• EU Market development initiative:
 – Development of electricity market
 – Unbundling of Power Utilities and privatization
 – Integration of Renewables
 – Implementation of Traders and new „players“
ELECTRICITY EXCHANGES

• Before we had:
 – Power companies/utilities (vertically integrated)
 – Customers

• First stage of the Market development was „unbundling“
 – Vertically integrated state owned companies were unbundled to:
 • Generation Companies (energy providers)
 • Transmission System Operators - TSO
 • Distribution System Operators - DSO
 • Demand Companies (Supliers)

• TSOs provide service of transporting energy from Generation Companies to Demand Companies (this includes responsibility for system security and stability)
• DSOs, same as TSOs but on distribution level
• Idea was Generation Companies and Supliers to be privatized (profit run companies), and service providers will be non-profit organizations
ELECTRICITY EXCHANGES

• **Second stage of the Market development – new entities**
 – Privatized Generation Companies
 – Privatized Supply companies
 – Traders

• For any trade you need to define the „commodities“:
 – Electricity
 – Services (provided by TSOs) envisaged in the form of „transfer capacity“

• TSOs are non-profit companies that provide service – implementation of transmission tariffs (to cover the costs of operation) – regulated income companies

• Regulators – defining the tariffs for electricity (based on expenditures/revenues so TSOs is not profitable

• Market operators – controlling the financial part of the electricity trade
EXAMPLE – DEVELOPMENT IN SERBIA

- **2004**
 - Energy law

- **2005**
 - EMS (TSO)
 - AERS (Regulator)
 - EPS established

- **2011**
 - Energy law
 - Transposition of the second package

- **2012**
 - Market Code

- **2013**
 - Electricity Market Opening
 - Balance responsibility concept
 - Balancing Market (energy)
 - Bilateral Electricity Market
 - Cross-border capacity allocation
 - Ancillary services (regulated framework)
 - Transmission losses (regulated framework)

- **2014**
 - Energy law
 - Transposition of the third package

- **2015**
 - SEEPEX (Market Operator) established

- **2016**
 - SEEPEX (organized day-ahead market)
 - Start of operation

- **2017**
 - Transparency Rules

- **2018**
 - Guarantees of origin Rules
New set of regulating principles was develop to preserve security of the system operation

A significant difference between network codes (NC) and guidelines (G) is that guidelines include processes whereby TSOs an/or NEMOs must develop methodologies

Similarities (NC and G):
- Both carry the same legal weight (both are Commission Regulations and are legally binding)
- Both are directly applicable – i.e. there is no requirement to transpose them into national law
- Both are subject to the same adoption procedure (Comitology procedure)
ELECTRICITY EXCHANGES

• Third stage of the Market development was „market expansion“
 – Transmission transferring capacity market
 – New commodities (like reserves, green certificates...) and therefore new markets

• All these activities had significant implications on parallel operation
INTERCONNECTION CAPACITY
(CONGESTION MANAGEMENT)
INTERCONNECTION CAPACITY - DEFINITIONS

- BCE - Base Case Exchange
- TTC - Total Transfer Capacity
- TRM - Transmission Reliability Margin
- NTC - Net Transfer Capacity
- AAC - Already Allocated Capacity
- ATC - Available Transmission Capacity

TTC = BCE + ΔE_{max}
NTC = TTC – TRM
ATC = NTC - AAC
MARKETS INTEGRATION AND CONGESTION MANAGEMENT

• A key challenge for market integration is to find ways of harmonizing regional rules and market platforms. Target Markets should be agreed by the Governance Body, Regulator Authorities, TSOs and stakeholders.

• Market integration also requires solutions to identify and effectively manage network congestion.

• Network congestion occurs when electricity is unable to flow where it is needed due to physical (e.g. not enough capacity) or contractual (all available capacity has been reserved) issues.

• Measures for solving congestion issues are:
 – investment in new network elements (cross-border transmission capacities)
 – rules for determining the amount of available cross-border capacity
 – cross-border capacity allocation on a non-discriminatory basis
 – equal conditions for all market participants
 – maximum utilization of transmission capacity
CONGESTION MANAGEMENT

• Congestion
 – **Physically**: when network element is overloaded (in full topology, or would be in case of outage (n-1))
 – **Commercially**: when more MW requests then capacity for the transfer at certain border (e.g. profile)

• **Cross-border transmission capacity allocation**: Process of in-advance allocation of transmission capacities (primarily at borders between systems/countries) to the electricity market players

• Cross-border transmission capacity allocation - essential part of Congestion Management process (which also considers load flow analyses such as Day Ahead Congestion Forecast and operational measures).
CONGESTION MANAGEMENT: CAPACITY CALCULATION (CC)

- For zonal markets, transmission network capacity calculation is typically ATC-based: which defines a unique constraint for the commercial exchange at certain border and direction.

- For nodal markets, per-branch limits are defined (e.g. PJM USA).

- Beside ATC-based, there are other hybrid forms of CC in zonal markets - such as flow-based capacity calculation (target model for capacity calculation on day-ahead and intraday timeframe in Europe).
CONGESTION MANAGEMENT: CAPACITY ALLOCATION

Explicit auctions

- Through a single interaction, capacity and electricity are traded at the same time, which is the main difference from the explicit auctions.
- Transmission capacity is "implicitly" allocated among the participants, based on the offered price of electricity.
- Implicit auctions are performed by Power Exchanges (PX)

Explicit auctions are performed by Auction Offices or TSOs.

Principles of capacity use:
- Use-it-or-loose-it
- Use-it-or-sell-it

Implicit auctions

- Use-it-or-lose-it
- Use-it-or-sell-it
CROSS-BORDER CAPACITY ALLOCATION

Why allocating transmission capacity?

- Transmission capacity is the deficient good of the electricity market.
- Transmission capacity is an important aim of the wholesale market design.
- Allocating transmission rights in the most efficient way is one of main issues of establishment of fair, transparent and non-discriminatory electricity market.
- Congestion revenues are meant to pay back investments in transmission development which are usually financed by consumers through tariffs.

Example of good practice: Establishment of common cross-border capacity market

TSOs need to collaborate in order to:

- create a common grid model
- define a common capacity calculation methodology
- jointly allocate capacity
- to split among themselves the cost borne to allocate capacity and the congestion income
CASE STUDY: EUROPE

Cross border market efficiency assessment 2015-2017 (ACER report)

<table>
<thead>
<tr>
<th>Country</th>
<th>NTC vs. benchmark (average)</th>
<th>Physical flows due to cross-border exchanges vs. thermal capacity on interconnectors (average)</th>
<th>Physical flows due to cross-border exchanges vs. thermal capacity on interconnectors (worst border)</th>
<th>Loop Flows vs. thermal capacity on interconnectors (average)</th>
<th>Loop Flows vs. thermal capacity on interconnectors (worst border)</th>
<th>Cost of remedial actions per unit demand (average, euro/MWh demand)</th>
<th>Volume of costly remedial actions vs. demand (average, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>51%</td>
<td>54%</td>
<td>39%</td>
<td>21%</td>
<td>56%</td>
<td>0.8</td>
<td>3%</td>
</tr>
<tr>
<td>BE</td>
<td>62%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.0</td>
<td>0%</td>
</tr>
<tr>
<td>BG</td>
<td>23%</td>
<td>28%</td>
<td>27%</td>
<td>NA</td>
<td>NA</td>
<td>0.0</td>
<td>0%</td>
</tr>
<tr>
<td>CH</td>
<td>64%</td>
<td>33%</td>
<td>23%</td>
<td>5%</td>
<td>7%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>CZ</td>
<td>52%</td>
<td>48%</td>
<td>34%</td>
<td>19%</td>
<td>56%</td>
<td>0.0</td>
<td>0%</td>
</tr>
<tr>
<td>DE</td>
<td>58%</td>
<td>46%</td>
<td>20%</td>
<td>9%</td>
<td>27%</td>
<td>1.7</td>
<td>5%</td>
</tr>
<tr>
<td>DK</td>
<td>48%</td>
<td>20%</td>
<td>20%</td>
<td>NA</td>
<td>NA</td>
<td>0.0</td>
<td>0%</td>
</tr>
<tr>
<td>EE</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0%</td>
</tr>
<tr>
<td>ES</td>
<td>53%</td>
<td>28%</td>
<td>23%</td>
<td>NA</td>
<td>NA</td>
<td>2.3</td>
<td>5%</td>
</tr>
<tr>
<td>FI</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.0</td>
<td>0%</td>
</tr>
<tr>
<td>FR</td>
<td>68%</td>
<td>45%</td>
<td>33%</td>
<td>8%</td>
<td>14%</td>
<td>0.0</td>
<td>0%</td>
</tr>
<tr>
<td>GB</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1.2</td>
<td>0%</td>
</tr>
<tr>
<td>GR</td>
<td>65%</td>
<td>30%</td>
<td>30%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>HR</td>
<td>60%</td>
<td>56%</td>
<td>49%</td>
<td>NA</td>
<td>NA</td>
<td>0.0</td>
<td>0%</td>
</tr>
<tr>
<td>HU</td>
<td>47%</td>
<td>54%</td>
<td>31%</td>
<td>11%</td>
<td>15%</td>
<td>0.1</td>
<td>0%</td>
</tr>
<tr>
<td>IE</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>IT</td>
<td>63%</td>
<td>46%</td>
<td>33%</td>
<td>7%</td>
<td>23%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>LT</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>7%</td>
</tr>
<tr>
<td>LV</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>14%</td>
</tr>
<tr>
<td>NL</td>
<td>62%</td>
<td>83%</td>
<td>83%</td>
<td>8%</td>
<td>8%</td>
<td>0.6</td>
<td>14%</td>
</tr>
<tr>
<td>NO</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0%</td>
</tr>
<tr>
<td>PL</td>
<td>21%</td>
<td>34%</td>
<td>26%</td>
<td>19%</td>
<td>27%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>PT</td>
<td>42%</td>
<td>23%</td>
<td>23%</td>
<td>NA</td>
<td>NA</td>
<td>1.7</td>
<td>0%</td>
</tr>
<tr>
<td>RO</td>
<td>26%</td>
<td>29%</td>
<td>27%</td>
<td>NA</td>
<td>NA</td>
<td>0.0</td>
<td>0%</td>
</tr>
<tr>
<td>SE</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>SI</td>
<td>61%</td>
<td>69%</td>
<td>65%</td>
<td>13%</td>
<td>15%</td>
<td>0.0</td>
<td>93%</td>
</tr>
<tr>
<td>SK</td>
<td>54%</td>
<td>57%</td>
<td>26%</td>
<td>10%</td>
<td>15%</td>
<td>0.0</td>
<td>0%</td>
</tr>
</tbody>
</table>
ANCILLARY SERVICES AND BALANCING MECHANISMS
ANCILLARY SERVICES

• Ancillary services refer to a range of functions which TSOs contract so that they can guarantee system security.

• Ancillary services include:
 – black start capability (the ability to restart a grid following a full blackout);
 – frequency response (to maintain system frequency with automatic and very fast responses);
 – fast reserve (which can provide additional energy when needed);
 – the provision of reactive power (Voltage/Reactive control)

• Important aspect: approach of procuring ancillary services.

• Goal: access to a broad range of services from a wide range of providers: including generators and demand response
BALANCING SERVICES

• TSO is maintaining system security and covering system imbalances caused by balancing responsible parties (BRPs) by activating balancing reserves from balancing service providers (BSPs)

• Balancing services can be defined on two levels:
 – Balancing capacity (reserve) (in MW) – is available capacity for TSOs to balance power system in real-time
 – Balancing energy (in MWh) – is provided energy as a consequence of activated balancing capacity (reserve)
TYPES OF BALANCING SERVICES

<table>
<thead>
<tr>
<th>Balancing service</th>
<th>Current terminology in Europe</th>
<th>Activation method</th>
<th>Time domain of response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary control reserve</td>
<td>Frequency Containment Reserve (FCR)</td>
<td>Automatic</td>
<td>Up to 30 seconds</td>
</tr>
<tr>
<td>Secondary control reserve</td>
<td>Automatic Frequency Restoration Reserve (aFRR)</td>
<td>Automatic</td>
<td>Up to 15 minutes</td>
</tr>
<tr>
<td>Directly activated tertiary control reserve (Fast)</td>
<td>Manual Frequency Restoration Reserve (mFRR)</td>
<td>Manual</td>
<td>Up to 15 minutes</td>
</tr>
<tr>
<td>Schedule-activated tertiary control reserve (Slow)</td>
<td>Replacement Reserves (RR)</td>
<td>Manual</td>
<td>15 minutes – 1 hour</td>
</tr>
</tbody>
</table>

![Diagram showing power/frequency relationship and reserve activation processes](image)
BALANCING MECHANISM – MAIN PRINCIPLES
BALANCING SERVICES MARKET – MAIN PILLARS

• Definition of products (reserve products, energy products) and their characteristics:
 – mode of activation,
 – activation type,
 – full activation time,
 – granularity,
 – min/max quantity resolution,
 – validity period,
 – etc.

• Procurement process – mandatory provision or organized market

• Service providers – generation units and/or demand response

• Settlement – marginal pricing or pay as bid or regulated price

• Cost recovery scheme – balancing responsible parties and/or grid users

• Activation rules – pro rata or merit order list

• Contracting period (year, month, week, day ahead, intraday)
BALANCING MARKET: OFTEN OBSERVED CHALLENGES

• Non existing or in early development phase:
 − Concept of balancing responsibility of all parties not implemented
 − Regulated prices for balancing capacity
 − Partly regulated, partly market based prices for balancing energy – usually not directly linked with BSP offers

• Lack of competition:
 − Presence of dominant market player (service provider)
 − Imbalance settlement price often not market–based; no full incentive for BRPs to follow the schedule

• High costs of balancing at small national markets:
 − High level of balancing reserve (compared to overall size of generation portfolio)
 − No cross-border balancing except for the Emergency energy

Potential solution - in a form of regional cooperation that could:
- increase the competition (i.e. the number of BSPs)
- increase the technical possibilities
- lower the level of reserve
- lower the overall balancing costs
BALANCING SERVICES MARKET: REGIONAL COOPERATION

Common usage of balancing reserve (capacity)
- Common dimensioning of balancing reserve
- Exchange of balancing reserve
- Sharing of balancing reserve

Common usage of balancing energy
- Imbalance netting
- Exchange of balancing energy over Common Merit Order list (CMO)
BALANCING SERVICES MARKET: REGIONAL COOPERATION

Model 1 (TSO – BSP)

- Control Area 1
 - Imbalance Settlement Arrangements 1
 - TSO 1
 - BSP 1
 - BSP 2
- Control Area 2
 - Imbalance Settlement Arrangements 2
 - TSO 2
 - BSP 3
 - BSP 4

TSO can buy services directly from an external balancing service providers (BSP)

Model 2 (TSO – TSO)

- Control Area 1
 - Imbalance Settlement Arrangements 1
 - TSO 1
 - BSP 1
 - BSP 2
 - TSO 2
- Control Area 2
 - Imbalance Settlement Arrangements 2
 - TSO 3
 - BSP 3
 - BSP 4

TSO can only buy services from external balancing service providers (BSP) through the connecting TSO

Recommended model

Model 2 (TSO – TSO)
CASE STUDY EUROPE: BALANCING COOPERATION

Even in the mature national balancing markets (such as the ones in Europe), some of the problems persists, therefore increased cross border cooperation is recognized as a goal to be achieved in order to:

- Increase efficiency of power system regulation
- Decrease overall balancing costs and prices
- Avoid occurrence of extreme situations and price spikes

Typical day (October 2019) - wholesale VS upward secondary regulation energy prices [EUR/MWh]

Ongoing projects aiming the establishment of cross border balancing cooperation
RESOURCE ADEQUACY OF THE SYSTEM AND SECURITY OF SUPPLY
System Adequacy Assessment Objectives

- Assessment of the risk to security of supply at national/regional level
- Assessment of the needs for flexibility over the next decade
- Highlight the contribution of interconnectors to national adequacy
- Send signals to both market-players and decision makers of the need for generation fleet to evolve
ADEQUACY OF THE SYSTEM AND SECURITY OF SUPPLY

Usual Roles in System Adequacy Assessment

- **Ministry**: define strategic documents related to future net generating capacity (NGC), demand evolution, grid development

- **TSO**: provide the necessary technical analysis to determine threats to generation adequacy and its associated impacts on the security of supply.

- **Regulators**: Use Adequacy results as signals to establish counter measures in order to ensure the desired adequacy levels (e.g. capacity mechanisms)

Planning Horizons

```
<table>
<thead>
<tr>
<th></th>
<th>SHORT TERM</th>
<th>MID TERM</th>
<th>LONG TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAL TIME</td>
<td>&gt; 1 week</td>
<td>Several years</td>
<td>&gt;10 years</td>
</tr>
<tr>
<td>OPERATIONAL DECISIONS</td>
<td>several months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INVESTMENT DECISIONS</td>
<td>Several years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLICY DECISIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Uncertainty Increases
ADEQUACY OF THE SYSTEM AND SECURITY OF SUPPLY

System Adequacy Assessment

Deterministic Approach

Probabilistic Approach

Main indicators

Remaining Capacity

Analyses of one hour per season/month as representatives of the whole year (the third Wednesday in January at 7 p.m. and the third Wednesday in July at 11 a.m.)

Analyses of ALL hours in a year

Several climatic years (temperature, hydro, wind, solar conditions)

LOLE [h/y] Loss Of Load Expectation

ENS [MWh/y] Energy Not Supplied
CASE STUDY EUROPE: MID TERM ADEQUACY ASSESSMENT (2018)
CASE STUDY EUROPE: CAPACITY MECHANISMS IN PLACE (2018)
• CENTRAL ASIA REGIONAL ELECTRICITY MARKET

• CHIEF OF PARTY - ARMEN ARZUMANYAN
 • KUNAYEV STREET 77, OFFICE 520
 • ALMATY, KAZAKHSTAN, 050000

DISCLAIMER: This product is made possible by the support of the American People through the United States Agency for International Development (USAID). The contents of this presentation are the sole responsibility of Tetra Tech ES, Inc. and do not necessarily reflect the views of USAID or the United States Government.