Workshop on
ANALYZING AND MANAGING THE IMPACT OF VARIABLE RENEWABLE ENERGY ON THE GRID WORKSHOP
Tashkent, September 4-5, 2019

What studies should be performed to assess the impact of VRE on System Operations?

PRAMOD JAIN, Ph.D.
Consultant, USAID Power the Future
Agenda

- Purpose of the UCED study
- Process
- Inputs and outputs
- Questions answered
Purpose of Study 1: Unit Commitment and Economic Dispatch (UCED) Simulation

- System Operator optimizes the power supply cost through the daily unit commitment and hourly economic dispatch of all generators.
- VRE can have a significant impact on this, and the purpose of study 1 is to simulate the UCED process for future scenario years with planned or targeted amount of VRE generation.
- It is also called Production Cost Modeling.
The purpose of study 1 is to analyze the impact of VRE on:

- Unit commitment and economic dispatch (UCED) of conventional generators
- Operating parameters of conventional generators: operating efficiency, amount of time operating close to minimum capacity factor, cycling, PPA dispatch and operation terms, GHG emissions
- Operating parameters of transmission lines: congestion
- Type and amount of flexible generation required from existing or new generators to integrate VREs into grid operations
- Cost of integration of VRE. Scope of cost: additional cost due to operating generators are inefficient load factors and use of more expensive generation (peakers and other flexible generators)
1. Detailed model of the grid in a software like DIgSILENT Power Factory or Plexos.
 - Since the focus of the study is on dispatch of conventional generators, the grid model’s focus:
 - operational and contractual constraints
 - cost of generation and its various components
 - static properties of elements like generators and transmission lines

2. Run UCED simulation hour-by-hour (or finer granularity of say 30 minutes) for a whole year
 - Merit order dispatching with all the constraints is performed. In most cases the UCED model
 minimizes the production cost while attempting to satisfy all the constraints.
 - All the constraint violations are identified (if any) hour-by-hour.
 - Iterative: The modeler then evaluates a variety of options to relax the constraints and then
 rerun the model
 - This results in hour-by-hour dispatch of all the generators in order to meet the hourly load
Study 1 Overview

1. Constraints Modeling
 - Generator limits
 - T line limits
 - Contracts/PPA
 - Hydro
 - Maintenance schedule
 - Others

2. Unit Commitment Economic Dispatch

3. Balance Demand/Supply and Satisfy All Constraints?

Potential Impact of VRE
- Flexibility needs of thermal/hydro units:
 - Lower capacity factor
 - Shut down/start up
 - High ramp rate
- Methods of accessing flexibility
- Amount of RE Curtailment
- Limits on Ramping
- Additional cost of energy
- Others
Study 1 Process

Baseline & Scenario specific Model building & verification & validation → Run all scenarios → Compile results → Develop alternative solutions and rerun scenarios

Assess generation flexibility adequacy → Assess grid adequacy requirement → Assess increase in cost of dispatching conventional generators → Develop recommendations

Alternatives are:
• Storage
• Curtailment of VRE
• Additional flexible generation
• Demand response
Study 1 Input, Output

- UCED Simulation process:
 - Full year simulation of Unit Commitment and Economic Dispatch
 - Hourly or sub-hourly depending on dispatching granularity
 - Check if any constraints are violated and resolve them

- Input:
 - Demand, VRE generation forecast
 - Transmission capacity
 - Maintenance schedules
 - Constraints (more details)

- Output:
 - Resource adequacy (more details)
 - Grid adequacy (more details)
Example of Constraints

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Capacity (MW)</th>
<th>Technical constraints</th>
<th>Contractual constraints</th>
<th>Production cost</th>
</tr>
</thead>
</table>
| Nuclear | 1,100 | Min CF: 50%
Ramping: 5%/min
Min up time: 8 hrs
Min down time: 24 hrs | Max/Min monthly/annual units
Max/Min CF
Bi-lateral contracts | Generation cost
Ramping cost
Start-up/shut-down cost
Marginal cost curve |
| Coal SPP | 2x400 | Min CF: 40%
Ramping: 4%/min
Min up time: 4 hrs
Min down time: 6 hrs | Max/Min monthly/annual units
Max/Min CF
Bi-lateral contracts | Generation cost
Ramping cost
Start-up/shut-down cost
Marginal cost curve |
| Gas SPP | 2x300 | Min CF: 40%
Ramping: 6%/min
Min up time: 3 hrs
Min down time: 4 hrs | Max/Min monthly/annual units
Max/Min CF
Bi-lateral contracts | Generation cost
Ramping cost
Start-up/shut-down cost
Marginal cost curve |
| CCGT | 3x290 | Min CF: 50%
Ramping: 10%/min
Min up time: 2 hrs
Min down time: 2 hrs | Max/Min monthly/annual units
Max/Min CF
Bi-lateral contracts | Generation cost
Ramping cost
Start-up/shut-down cost
Marginal cost curve |
| OCGT | 3x180 | Min CF: 40%
Ramping: 20%/min
Min up time: 1 hrs
Min down time: 1 hrs | Max/Min monthly/annual units
Max/Min CF
Bi-lateral contracts | Generation cost
Ramping cost
Start-up/shut-down cost
Marginal cost curve |

For a more comprehensive list, see: https://core.ac.uk/download/pdf/34627483.pdf
Illustration of Study 1 Sample Result

Source: https://www.energy.gov/sites/prod/files/2016/02/f30/EPSA_Power_Sector_Modeling_FINAL_021816_0.pdf
What kinds of questions does Study 1 answer?

- How often and for how long are constraints violated and reason for violations: bilateral contracts, contractual minimum, technical minimum, ramp rate, congestion, etc.?
- How much balancing capacity (inter-dispatch interval) is required to manage planned VRE penetration? How would Russia and Central Asia be used for balancing?
- How much power would flow in inter-regional transmission lines? Would there be congestion?
- What is the expected curtailment of VRE?
- What is the cost of integrating VRE into the grid for different VRE penetration scenarios?
- What would be the benefits of changes to the current methodology of dispatching—reduction of dispatch interval, Automated Dispatching System and VRE forecasting?
- Should planned VRE plants be delayed or relocated because of balancing and other issues?
- What should be the changes to PPA and grid code to clarify issues like amount of curtailment, VRE forecasting process and desired accuracy, deviation settlement and others?
- Evaluate various scenarios for feasibility and cost:
 - Different penetration of VRE, different mix of solar and wind, different locations
 - Procurement of new flexible generation, retirement of old inflexible plants and retrofits of existing plants
Develop Recommendations

The final step is to develop recommendations in the following areas:

• Allowable VRE penetration levels and associated mitigating measures
• Amount and type of additional flexibility required from existing generation capacity
• Amount and type of new flexible generation capacity requirement
• Alternative strategies to increase penetration of VRE and associated cost: Curtailment of VRE generation during specific hours, energy storage, demand response and others
• Potential adverse impact of higher penetration of VRE and the associated cost of VRE integration
Thank You

PRAMOD JAIN
Consultant/President, Innovative Wind Energy, Inc.
pramod@i-windenergy.com

6 SARYARKA AVENUE, OFFICE 1430
ASTANA KAZAKHSTAN 000010

WWW.PTFCAR.ORG

DISCLAIMER This product is made possible by the support of the American People through the United States Agency for International Development (USAID). The contents of this presentation are the sole responsibility of Tetra Tech ES, Inc. and do not necessarily reflect the views of USAID or the United States Government.